Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)The Fred Young Submillimeter Telescope (FYST), which is the telescope of the CCAT-prime project, will be located at 5600 m near the summit of Cerro Chajnantor in northern Chile, and will host the modular instrument called Prime-Cam. Two of the instrument modules in Prime-Cam will be a spectrometer with a resolving power of R ∼ 100 and populated with a detector array of several thousand KIDs (Kinetic Inductance Detectors). The main science goal of this spectrometer module, called EoR-Spec, is to probe the Epoch of Reionization (EoR) in the early universe using the Line Intensity Mapping (LIM) technique with the redshifted [CII] fine-structure line. This presentation provides an overview of the optical, mechanical, and spectral design of EoR-Spec, as well as of the detector array that will be used. The optical design consists of four silicon lenses that have anti-reflection metamaterial layers. A scanning Fabry-Perot Interferometer (FPI) will be located at the pupil and provides the spectral resolution over the full spectral coverage of 210 GHz to 420 GHz in two orders, resulting in a redshift coverage of the [CII] line from z = 3.5 to z = 8. The detector array consists of three subarrays of KIDs, two of which are tuned for the frequency range between 210 GHz and 315 GHz, and one that is tuned for the 315 GHz to 420 GHz range. The angular resolution will be between about 30'' to 50''. This presentation also addresses the spectral and spatial scanning strategy of EoR-Spec on FYST. EoR-Spec is expected to be installed into Prime-Cam about 1 year after first light of FYST.more » « less
-
First light observations of the 280-GHz instrument module of the Fred Young Submillimeter Telescope in the CCAT Collaboration are expected in 2026. The focal plane of this module will consist of three superconducting microwave kinetic inductance detector (MKID) arrays: two aluminum-based arrays and one titanium nitride array with a similar layout. We have designed, microfabricated, assembled, and characterized a large-format aluminum-based MKID array. The responsivity of the detectors matches design expectation and scales at various optical loading levels as expected for aluminum. We have determined the internal quality factors and optical efficiency of the detectors, feedhorn beam shape, and the detector band pass. The detectors are photon noise limited with the majority of the noise being white photon noise down to 1 Hz. The array matches simulated expectations and is ready for sensitive astronomical observations for CCAT. Certain commercial equipment, instruments, or materials are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Abstract We present cosmological constraints from a gravitational lensing mass map covering 9400 deg2reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitudeσ8= 0.819 ± 0.015 at 1.8% precision, , and the Hubble constantH0= (68.3 ± 1.1) km s−1Mpc−1at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ8= 0.812 ± 0.013, , andH0= (68.1 ± 1.0) km s−1Mpc−1. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS8from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σto 2.1σ. This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz∼ 0.5–5 on mostly linear scales and galaxy lensing atz∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑mν< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys.more » « less
An official website of the United States government
